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MULTIVARIATE SEQUENTIAL ANALYSIS FOR EDUCATION

Given a basic (simple) hypothesis testing situation with null hypothesise,
vlternative hypothesis, probability of Type 1 error and probability of Type 11
error, the sequential analysis (Wald) method involves the construction of the
likelihood ratio at each stage of sampling and comparison of the ratio to boundary
values, A and B. If the upper limit is broken with the First sampla, the nuil
hypothesis is rejected. If the lower limit is.broken, the alternative hypothesis
is rejected (or the null hypothesis is accepted). If neither limit is broken, a
second sample is selected and the product of the two likelihood ratios is compared
toc the boundary values, A and B. The procedure is generally continued until one
of the two limits is broken. Using natural logarithms, the procedure may be repre-
sented as in diagram 1. !

Implicit calculations of the upper and lower boundaries involve solutior of
the simultaneous equations found in 2. Some computers can handle this
problem but more expedient methods are usually taken. Common estimates for A and
B are found in section 3. Use of these estimates introduce new error probabilities
into the hypothesis testing situation -~ it is somewhat comforting to know that the
sum of the new error probabilities is less than or equal to the sum of the desired
error probabilities.

The sequential analysis method for testing a hypothesis necessarily makes the
sample size, say N, a random Qariable -- N is defined as the size of the sample
when a boundary is first broken. Czleulation of the expected value of N from first
conditions involves the summation of the series found in 4. Again, direct calcu-~

lations are difficult. Approximations for this mean value exist if the mean

value of the likelihood ratio is not unity. For the particular case in which




populaticn means are being tested, the approximation for the expected value
éf the random variable N, given the particular population mean value B is given
in equation 5. Equation 6 gives this approximation for the special cases, Mo and xg.
The power of the test is needed for equation 5. Frem first conditioms, the
power is found by summing the infinite series in equation 7. Often, the power is
approximated using a two step procedure, Under mild conditions, there exists
a value h(g) such that the expected value of the likelihood ratio raised to this
povwer is equal to the constant, 1.0. Equation 8 gives two forms of this statement.
If a non-zero value of h(g) exists, the power of the Qéquential test may be estimated
by the expression found in 9.
I would now like to summarize the above by means of a common example. Assume
the random vector with p elements is distributed normally with known covariance
matrix i. The null hypothesis states the population mean vector is Yo- The al-

ternative hypothesis states the population mean vector is pa- The value z for this

special case is given in section 10 -~ & linear combination of the p variates.
For the special case in which p=1, section 1l gives the common expression and
the expression more often used in quality contiol work.

Continuing with the p-dimensional situation, the approximation for expected
number of vectors which would have to be sampled befure a decision is made if the
null hypothesis is assumed to be true is given in equation 12. A similar form
exists if the alternative hypothesis is assuméd to be true. For other values of
the populaticn mean vector, this approximation involves the power oi the
sequential test. Section 13 gives the details.

Perhaps now is the time for the question; "Why, sequential analysis?" The
procedure was developed by Wald during World War II -- its optimality is expressed
as follows: the expected sampie size under either H, or Hy is usualli a fraction
of the fixed sample size test with comparable error probabilities. In the univariate

o ~ase for means, the fraction is often % or less. Empirical work at The Florida
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State University for a limited number of cases with dimensionality two or three
show empirically that the fraction in these multivariate cases if often close to
1/2. Comparable economy in other multivariate cases appears possible.

All of the above comments have impiied that one vector is sampled at each
stage of testing procedure. It might be desirable to sample groups of vectors at
each stage of the testing procedure. For the above special case, the only correc-
tion would be a group size factor in the denominator of each term in the variance-
covariance matrix. The expected sample size could be calculated as in equation 1k,
The author has taken another approvach to sequential analysis in the multirariate
case. Using random normal vectors, the Chi-Square or F (possible Beta) distribu-
tions are used in the likelihood ratio. Sampling is performed with groups of
vectors. The advantages of this procedure are:

A. The non-centrality parameter is constant for the F test
corresponding to the Chi-Square test. Relationships between

the two tests are possible.

B. All approximations given in thé first part of this paper apply
to this testing procedure.

Certain expected values of random variables aye given in section 15, 16, and 17,
The simple hypothesis situation which was introduced before is summarized
in section 18. If the f£first sample of n vectors yields a value z) which satisfies
the statement of inequality, a second sample of n vectors is taken and the sum
z) + 23 is compured to the boundaries. The complexity of the calculations assume
the experimenter has a programmer available. The expected number of wvectors which
would have to be sampled if the null hypothesis is assumed to be true is
approximated by the expression in section 19.
The comparable test with unknown dispersion matrix is summarized in section
20. One comment -- the sample varianéf-covariance matrix is calculated for each
group of measurements. The expected number of vectors which would have to be

sampled if the null hypothesis is assumed to be true is given, approximately,

by equation 21.



Section 22 gives the basic approach for multivariate analysis of variance.

Section 23 gives the sequential "T" test in the univariate case.

Closing Comments:

1. It is not necessary to insure that the sample size in each group of
vectors is identical if the common approximations are not to be used.

2. No literature exists for optimal group sizes to be used in the sequential
analysis.

3. The preocedure can be extended to any standard hypothesis testing
situation.
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Formulae for
MULTIVARIATE SEQUENTIAL ANALYSIS FOR EDUCATION
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i. Fo(i,‘.) is the density function of the random vector X under the nuil hypothesis, Hg.

F00 is the density function of the random vector X under the alternative
hypothesis, Hg.

2 = In fa(i,‘i)
PN fo(ﬁi)
(Reject H,) InB¢ Z-;_’zi {InA (Reject Hgy)
E Rk &R &' .
2. 4= P (Rejecting Hy| Ho) B =P (Rejecting Hg | Ha)

d=p(z1?_ I"Al Mo) + P(lnB(z1<1nA, z4 +222.1nA! Ho) + eee

b
B =PELin|Hy) + P(InBLzKIn A, 2, +2,41I0 8| Hy) + ...

RERBRR
3.
L2232 E 2] cx I‘. ca

4. For a specified population mean vector A s
"y

E/‘,#(N) =1 [ 1 - PAnB<L 23< lnAl,g-)] + 2 -[1 - PanB< z3< nA, 1nB<zg+Zz<la6§,g€;]+..
PP Y ’

5. Giveng, P (Rejectng Holgr=1-48 .

E&,(N)x _£1 -/3 (@'ﬂ- InA +4 () InB.

E/z’é,(zi)
X 2 2 R
6. anéf =hhy s
B MO a - 1;A + gm ~DHnB .
/%"c(zi"

For q =ge,» E, N}z Q-8 )ElnA(z:-/.‘s‘ "ingB .
Aot




Hook iR
7. 1 "/3 () = F’(z.i?; lnA[/'&;-)+F’(lnB<z1ﬂlnA, z4 +22_$31nA,!,%)+.“

i
LEXE 24

8. For population mean s h (&) must satisfy
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9. For a specifiad population mean vector ,ﬁ, and non—zero h (£),
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Certain values of the population mean vector yield a non—zeroc value h ().
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i4. n vactors are sampled at each stage.,
faCf‘fi) 3 fo('gi) are density functions of the sample mean vactor,
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15, x follows the non—ceniral chi-square distribution with p degrees
of firecedom ard non~—centrality parameterrd
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Var (0 = 2p + 482
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with \P(a) = pfta) , the Digamma (or Psi) function.
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is. y follows the non~central F distribution with m and n degrees
of freedom and non~centrality parameter & 2.
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17. x follows the non—central Beta distribution with a and b degrees
of freedom arvdd non—centrality parameter

§ o2 g?

E:gx'j = e“‘i'oa‘z, CZTH . i
Rl a+thb+i
2
§ o0 3*
Efinx] = W@-e 7 () . Yee+b+n .
Lo i
L2828 £
18. n vectors are sampled; p22.
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Inversion of a matrix can be avoided if the following relationship is used:
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20. n vectors are samplad; pF 2.
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2z. Rancdom sarnples of n vectors are taken from 3 multivariate
norrmal populations.
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The hypothestis of equal population mean vectors becomes
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22, cont. The alternative hypothesis may be:

) =
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Sequential procedures follow immediately with non—centrality
parameter in both the known dispension matrix problem and unknown
dispension matrix problem equal to
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23. Univariate "t".

n measurements are samples from the normal population.
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It can be shown that the average sampling number in this situation
is greater than the average sampling number in the corresponding
known—-variance test.
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Historical Sketeh of équential Analysis

The initial breakthrough in sequentlal analysis was made by
wald (1945, 1947). Cox (1952) and Girshick (1246) extended the
vasic technique to variance tests and exponential family tests.
Johnson (1953, 1954) worked extensively witn analysis of vari-
ance. Papers on multivariate sequential analysis were written
by Jackson and Bradley (1961A, 1961B). Most of thé more re~
cent literature deals with arbitrary stopping rules——see Myers,
Schneiderman and Armitage (1966). Theoretical work with
non—central statistles presented in this paper depend heavily
upon the Mellin Transform as presented by Epstein (1948).
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